Reporting in the June 21 issue of the journal Nature, University of Wisconsin-Madison chemical and biological engineering Professor James Dumesic and his research team describe a two-stage process for turning biomass-derived sugar into 2,5-dimethylfuran (DMF), a liquid transportation fuel with 40 percent greater energy density than ethanol.
The prospects of diminishing oil reserves and the threat of global warming caused by releasing otherwise trapped carbon into the atmosphere have researchers searching for a sustainable, carbon-neutral fuel to reduce global reliance on fossil fuels. By chemically engineering sugar through a series of steps involving acid and copper catalysts, salt and butanol as a solvent, UW-Madison researchers created a path to just such a fuel.
Currently, ethanol is the only renewable liquid fuel produced on a large scale," says Dumesic. "But ethanol suffers from several limitations. It has relatively low energy density, evaporates readily, and can become contaminated by absorption of water from the atmosphere. It also requires an energy-intensive distillation process to separate the fuel from water."
Not only does dimethylfuran have higher energy content, it also addresses other ethanol shortcomings. DMF is not soluble in water and therefore cannot become contaminated by absorbing water from the atmosphere. DMF is stable in storage and, in the evaporation stage of its production, consumes one-third of the energy required to evaporate a solution of ethanol produced by fermentation for biofuel applications.
The prospects of diminishing oil reserves and the threat of global warming caused by releasing otherwise trapped carbon into the atmosphere have researchers searching for a sustainable, carbon-neutral fuel to reduce global reliance on fossil fuels. By chemically engineering sugar through a series of steps involving acid and copper catalysts, salt and butanol as a solvent, UW-Madison researchers created a path to just such a fuel.
Currently, ethanol is the only renewable liquid fuel produced on a large scale," says Dumesic. "But ethanol suffers from several limitations. It has relatively low energy density, evaporates readily, and can become contaminated by absorption of water from the atmosphere. It also requires an energy-intensive distillation process to separate the fuel from water."
Not only does dimethylfuran have higher energy content, it also addresses other ethanol shortcomings. DMF is not soluble in water and therefore cannot become contaminated by absorbing water from the atmosphere. DMF is stable in storage and, in the evaporation stage of its production, consumes one-third of the energy required to evaporate a solution of ethanol produced by fermentation for biofuel applications.
IREJN is Connecticut's Interfaith Power and Light. Visit us at http://www.irejn.org/.
No comments:
Post a Comment